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1 Introduction

Dynamic state estimation (DSE) is a generalization of differential protection
that offers a reduced likelyhood of misoperation, particularly in the case of
devices with nonlinear characteristics such as transformers which are being en-
ergized [1]. It is also useful in cases where distance protection performs poorly,
such as transmission lines with series compensation [2] or mutually coupled
transmission lines [3]. DSE has been previously applied to microgrid branch
protection [4, 5, 6].

This study investigates the use of DSE for protection of radial portions of
a microgrid or distribution system. This can be a challenge in microgrids or
distribution systems with distributed generation on account of lack of fault cur-
rent from inverter-interfaced generation [7], varying fault current between grid-
connected and islanded modes [7], the potential for normally-meshed operation
[8] and unbalanced operation due to single-phase loads [8]. Admittance relaying
has been investigated as a solution for protection of microgrids [9], though it
has been observed to have issues with grounded-wye connected loads [10], and
additional relaying is necessary to prevent misoperation [8].

This study treats radial portions of an electrical network as load busses.
It is assumed that these portions contain no loops or downstream generation.
They are modeled as constant-impedance networks with unknown impedances
but known connectivity. To ensure that the number of measured variables is
greater than approximately 1.6 times the number of free parameters, most mod-
els presented here make the assumption that the loads are balanced, where 1.6
is a commonly selected number to ensure sufficient measurements for system
identification [11]. Every load and fault configuration will require a separate
model. For a given load configuration, a model for each fault configuration is fit
to measured values and the the model with the lowest error in terms of fitting
the observed variables is assumed to be the correct one. On a grounded-wye-
connected load the following models would be necessary to distinguish between
normal operation, line-ground faults and line-line faults:

1. Normal operation: each branch of the load has the same impedance which
is modeled as a series resistive-inductive (RL) network

2. Phase A-ground fault: the faulted branch A is modeled as a resistance
while the unfaulted branches B and C are modeled as series RL networks
with equal parameters

3. Phase B-ground fault: the faulted branch B is modeled as a resistance
while the unfaulted branches C and A are modeled as series RL networks
with equal parameters

4. Phase C-ground fault: the faulted branch C is modeled as a resistance
while the unfaulted branches A and B are modeled as series RL networks
with equal parameters
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5. Phase A-B fault: the fault impedance is modeled as a resistance across
the load terminals A and B, while each branch of the load is modeled as
a series RL network

6. Phase B-C fault: the fault impedance is modeled as a resistance across
the load terminals B and C, while each branch of the load is modeled as
a series RL network

7. Phase C-A fault: the fault impedance is modeled as a resistance across
the load terminals C and A, while each branch of the load is modeled as
a series RL network.

On a delta-connected system, the following models would be necessary to dis-
tinguish between normal operation, line-ground and line-line faults:

1. Normal operation: each branch of the load has the same impedance which
is modeled as series RL network

2. Phase A-ground fault: the fault impedance is modeled as a resistance
between load terminal A and ground while the load branches are modeled
as series RL networks

3. Phase B-ground fault: the fault impedance is modeled as a resistance
between load terminal B and ground while the load branches are modeled
as series RL networks

4. Phase C-ground fault: the fault impedance is modeled as a resistance
between load terminal C and ground while the load branches are modeled
as series RL networks

5. Phase A-B fault: the fault impedance is modeled as a resistance across
the load terminals A and B, while the the branches across load terminals
B-C and C-A are modeled as series RL networks

6. Phase B-C fault: the fault impedance is modeled as a resistance across
the load terminals B and C, while the the branches across load terminals
C-A and A-B are modeled as series RL networks

7. Phase C-A fault: the fault impedance is modeled as a resistance across
the load terminals C and A, while the the branches across load terminals
A-B and B-C are modeled as series RL networks.

Both phasor-based and dynamic approaches are investigated for protection.
Section 2 describes the implementation of phasor-based state estimation for
load bus protection. Phasor-based state estimation is conceptually similar to
DSE but more straightforward to derive and implement as it only requires a
single time period. Section 3 describes the implementation of DSE for load
bus protection. Section 4 describes how two different transient models of loads
are developed as test cases and run to test both phasor and dynamic state
estimation, while section 5 presents the performance of state estimation on the
test cases. Finally, section 6 summarizes conclusions of this study.
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2 Phasor Implementation

The phasor implemementation of state estimation-based protection is simpler,
so protection will be demonstrated first for the phasor case. For the phasor case,
only a single time sample is used which limits the number of measurements and
therefore the number of parameters that can be estimated.

2.1 Single-Phase Impedance

The output of the system illustrated in Fig. 1 is

y =

[
V
I

]
. (1)

where V and I are phasor quantities. The state of the system is

x =

[
Z
Iz

]
. (2)

The output state mapping for the system is the vector-valued function

y = h(x) (3)

where

h1(x) = Vz (4)

= ZIz (5)

h2(x) = Iz. (6)

The Jacobian of h(x) is determined as follows

∂Vz
∂Z

=
∂

∂Z
ZIz = Iz (7)

∂Vz
∂Iz

=
∂

∂Iz
ZIz = Z (8)

∂Iz
∂Z

=
∂

∂Z
Iz = 0 (9)

∂Iz
∂Iz

=
∂

∂Iz
Iz = 1. (10)

The mapping between variables and the state vector is

Z = x1 (11)

Iz = x2. (12)
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Figure 1: Phasor model for a single-phase load

Given the variable and state mapping, the Jacobian can be built as follows

H =

∂Vz

∂Z
∂Vz

∂Iz

∂Iz
∂Z

∂Iz
∂Iz

 . (13)

Given the Jacobian, the state of the system can be solved for iteratively

εi = y − h(xi) (14)

Ji = ||εi||2 (15)

xi+1 = xi + (H ′iHi)
−1H ′iεi. (16)

The derivation of eq. 16 is presented in the appendix.

2.2 Grounded-Wye with Line-Ground Fault

The output for the system illustrated in Fig 2 is

y =
[
Ia Ib Ic Va Vb Vc

]T
. (17)

This is easiest to model as an unbalanced load where the fault impedance is not
treated specially. The state of the system is therefore

x =
[
Ya Yb Yc Vza Vzb Vzc

]T
. (18)

The output-state mapping function is
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Figure 2: Phasor model for a grounded-wye load with line-ground fault

h1(x) = Ia = yaVa

h2(x) = Ib = ybVb

h3(x) = Ic = ycVc

h4(x) = Va = Vza

h5(x) = Vb = Vzb

h6(x) = Vc = Vzc. (19)

The Jacobian of h(x) is determined as follows:

∂Ia
∂ya

=
∂

∂ya
yaVa

∂Ib
∂yb

=
∂

∂yb
ybVb

∂Ic
∂yc

=
∂

∂yc
yaVc

∂Va
∂Vza

=
∂Va
∂Va

= 1

∂Vb
∂Vzb

=
∂Vb
∂Vb

= 1

∂Va
∂Vzc

=
∂Vc
∂Vc

= 1. (20)
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The mapping between variables and the state vector is

ya = x1

yb = x2

yc = x3

Vza = x4

Vzb = x5

Vzc = x6. (21)

Given the variable and state vector mapping, the Jacobian can be built as follows

H(1, 1) =
∂Ia
∂ya

H(2, 2) =
∂Ib
∂yb

H(3, 3) =
∂Ic
∂yc

H(4, 4) =
∂Va
∂Vza

= 1

H(5, 5) =
∂Vb
∂Vzb

= 1

H(6, 6) =
∂Vc
∂Vzc

= 1. (22)

2.3 Grounded-Wye with Line-Line Fault

The output for the system illustrated in Fig 3 is

y =
[
Ia Ib Ic Va Vb Vc

]T
. (23)

The state of the system is

x =
[
Yl Yf Vza Vzb Vzc

]T
. (24)

The output state mapping for the system is the vector-valued function

y = h(x). (25)

This is derived from the admittance matrix of the system

Y =

yl + yf −yf 0
−yf yl 0

0 0 yl

 . (26)

From the relation

I = Y V (27)
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Figure 3: Phasor model for a grounded-wye load with line-line fault

h(x) can be derived

h1(x) = Ia = (yl + yf )Vza − yfVzb
h2(x) = Ib = −yfVza + ylVzb

h3(x) = Ic = ylVzc

h4(x) = Va = Vza

h5(x) = Vb = Vzb

h6(x) = Vc = Vzc. (28)
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The Jacobian of h(x) is determined as follows

∂Ia
∂yl

=
∂

∂yl
((yl + yf )Vza − yfVzb)

=
∂

∂yl
(Vzayl + (Vza − Vzb)yf )

= Vza

∂Ia
∂yf

=
∂

∂yf
((yl + yf )Vza − tyfVzb)

=
∂

∂yf
((Vza − Vzb)yf + Vzayl)

= Vza − Vzb
∂Ib
∂yl

=
∂

∂yl
(−yfVza + ylVzb)

= Vzb

∂Ib
∂yf

=
∂

∂yf
(−yfVza + ylVzb)

= −Vza
∂Ic
∂yl

=
∂

∂yl
Vzyl

= Vzc

∂Ic
∂yf

=
∂

∂yf
Vzyl

= 0 (29)

∂Va
∂Vza

=
∂Va
∂Va

= 1

∂Vb
∂Vzb

=
∂Vb
∂Vb

= 1

∂Va
∂Vzc

=
∂Vc
∂Vc

= 1. (30)

2.4 Delta-Connected Load with Line-Line Fault

The output of the system illustrated in Fig. 4 is

y =
[
Ia Ib Ic Va Vb Vc

]T
(31)

where V and I are phasor quantities.
The state of the system is

x =
[
Yf Yll Vza Vzb Vzc

]T
. (32)
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Figure 4: Phasor model for a delta-connected load with a line-line fault

The output state mapping for the system is the vector-valued function

y = h(x). (33)

This is derived from the admittance matrix of the system

Y =

 yaa −yab −yac
−yab ybb −ybc
−yac −ybc ycc

 (34)

where

yaa = yab + yca (35)

ybb = yab + ybc (36)

ycc = yca + ybc (37)

and

yab = yf (38)

ybc = yca = yll. (39)

From the relation

I = Y V (40)

h(x) can be derived
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h1(x) = Ia = yaaVza − yabVzb − ycaVzc
= (yab + yca)Vza − yabVzb − ycaVzc
= (yf + yll)Vza − yfVsb − yllVzc

h2(x) = Ib = −yabVza + ybbVzb − ybcVzc
= −yabVza + (yab + ybc)Vzb − ybcVzc
= −yfVza + (yf + yll)Vzb − yllVzc

h3(x) = Ic = −ycaVza − ybcVzb + yccVzc

= −ycaVza − ybcVzb + (yac + ybc)Vzc

= −yllVza − yllVzb + 2yllVzc

h4(x) = Va = Vza

h5(x) = Vb = Vzb

h6(x) = Vc = Vzc. (41)
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The Jacobian of h(x) is determined as follows

∂Ia
∂yf

=
∂

∂yf
((yf + yll)Vza − yfVsb − yllVzc)

=
∂

∂yf
(Vza − Vzb)yf + (Vza − Vzc)yll

= Vza − Vzb
∂Ia
∂yll

=
∂

∂yll
((yf + yll)Vza − yfVsb − yllVzc)

=
∂

∂yll
(Vza − Vzb)yf + (Vza − Vzc)yll

= Vza − Vzc
∂Ib
∂yf

=
∂

∂yf
(−yfVza + (yf + yll)Vzb − yllVzc)

=
∂

∂yf
((Vzb − Vza)yf + (Vzb − Vzc)yll)

= Vzb − Vza
∂Ib
∂yll

=
∂

∂yll
(−yfVza + (yf + yll)Vzb − yllVzc)

=
∂

∂yf
((Vzb − Vza)yf + (Vzb − Vzc)yll)

= Vzb − Vzc
∂Ic
∂yf

=
∂

∂yf
(−yllVza − yllVzb + 2yllVzc)

=
∂

∂yf
((2Vzc − Vza − Vzb)yll)

= 0

∂Ic
∂yll

=
∂

∂yll
(−yllVza − yllVzb + 2yllVzc)

=
∂

∂yll
((2Vzc − Vza − Vzb)yll)

= 2Vzc − Vza − Vzb
∂Va
∂Vza

=
∂Va
∂Va

= 1

∂Vb
∂Vzb

=
∂Vb
∂Vb

= 1

∂Va
∂Vzc

=
∂Vc
∂Vc

= 1. (42)
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The mapping between variables and the state vector is

yf = x1

yll = x2

Vza = x3

Vzb = x4

Vzc = x5. (43)

Given the variable and state vector mapping, the Jacobian can be built as follows

H(1, 1) =
∂Ia
∂yf

H(1, 2) =
∂Ia
∂yll

H(2, 1) =
∂Ib
∂yf

H(2, 2) =
∂Ib
∂yll

H(3, 1) =
∂Ic
∂yf

H(3, 2) =
∂Ic
∂yll

H(4, 3) =
∂Va
∂Vza

= 1

H(5, 4) =
∂Vb
∂Vzb

= 1

H(5, 4) =
∂Vc
∂Vzc

= 1. (44)

Unless otherwise specified H(n,m) = 0.

2.5 Delta-Connected Load with a Line-Ground Fault

The output of the system illustrated in Fig. 5 is

y =
[
Ia Ib Ic Va Vb Vc

]T
. (45)

where Vφ and Iφ are phasor quantities.
The state of the system is

x =
[
Yll Yf Vza Vzb Vzc

]T
. (46)

In the above, the output is derived from the admittance matrix described in
Eqs. 26 with the distinction that

yaa = yab + yca + yag (47)

ybb = yab + ybc (48)

ycc = yca + ybc (49)

and
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Figure 5: Phasor model for a delta-connected load with a line-ground fault

yag = yf (50)

yab = ybc = yca = yll. (51)

The output-state mapping function is derived similarly as in Section 2.4:

h1(x) = Ia = yaaVza − yabVzb − ycaVzc
= (yab + yca + yag)Vza − yabVzb − ycaVzc
= (yf + 2yll)Vza − yllVsb − yllVzc

h2(x) = Ib = −yabVza + ybbVzb − ybcVzc
= −yabVza + (yab + ybc)Vzb − ybcVzc
= −yllVza + 2yllVzb − yllVzc

h3(x) = Ic = −ycaVza − ybcVzb + yccVzc

= −ycaVza − ybcVzb + (yac + ybc)Vzc

= −yllVza − yllVzb + 2yllVzc

h4(x) = Va = Vza

h5(x) = Vb = Vzb

h6(x) = Vc = Vzc. (52)
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The Jacobian of h(x) is determined as follows

∂Ia
∂yll

=
∂

∂yll
((yf + 2yll)Vza − yllVsb − yllVzc)

=
∂

∂yll
((2Vza − Vzb − Vzc)yll + Vzayf )

= 2Vza − Vzb − Vzc
∂Ia
∂yf

=
∂

∂yf
((yf + 2yll)Vza − yllVsb − yllVzc)

=
∂

∂yf
((2Vza − Vzb − Vzc)yll + Vzayf )

= Vza

∂Ib
∂yll

=
∂

∂yll
(−yllVza + 2yllVzb − yllVzc)

=
∂

∂yll
(−Vzayll + 2Vzb − Vzc)yll)

= 2Vzb − Vza − Vzc
∂Ib
∂yf

=
∂

∂yf
(−yllVza + 2yllVzb − yllVzc)

= 0

∂Ic
∂yll

=
∂

∂yll
(−yllVza − yllVzb + 2yllVzc)

=
∂

∂yll
(−Vza + 2Vzc − Vzb)yll)

= 2Vzc − Vza − Vzb
∂Ic
∂yf

=
∂

∂yf
(−yllVza − yllVzb + 2yllVzc)

= 0

∂Va
∂Vza

=
∂Va
∂Va

= 1

∂Vb
∂Vzb

=
∂Vb
∂Vb

= 1

∂Va
∂Vzc

=
∂Vc
∂Vc

= 1. (53)
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The mapping between variables and the state vector is

yll = x1

yf = x2

Vza = x3

Vzb = x4

Vzc = x5. (54)

Given the variable and state vector mapping, the Jacobian can be built as follows

H(1, 1) =
∂Ia
∂yll

H(1, 2) =
∂Ia
∂yf

H(2, 1) =
∂Ib
∂yll

H(2, 2) =
∂Ib
∂yf

H(3, 1) =
∂Ic
∂yll

H(3, 2) =
∂Ic
∂yf

H(4, 3) =
∂Va
∂Vza

= 1

H(5, 4) =
∂Vb
∂Vzb

= 1

H(5, 4) =
∂Vc
∂Vzc

= 1. (55)

3 Dynamic Implementation

As in the case of the previous section, the dynamic implementation of DSE is
applied to single-phase, grounded-wye and delta-connected load configurations.
While the phasor implementation uses a single time point for state estimation,
with the dynamic implementation several points are used, in this case 12 cycles
sampled at a 2 kHz sample rate.

3.1 Single-Phase Series RL Load

The output for the system illustrated in Fig. 6 is

y(t) =

[
v(t)

i(t)z(t)

]
. (56)

For the purposes of state estimation, this is sampled at points n ∈ {1, ..., N}
giving the vector-value equation

y =

[
v
i

]
. (57)

16



S

R

L

v(t)

i(t),

v (t)

v (t)

i (t)

R

Figure 6: Dynamic model for single-phase RL series load

where v =
[
v(1) v(2) · · · v(N)

]T
, i =

[
i(1) i(2) · · · i(N)

]T
and z =[

z(1) z(2) · · · z(N)
]T

.
The state for the system is

x =
[
R L vr vl

]T
. (58)

The output-state mapping for the system is the vector-valued function

y = h(x) (59)

where

hn(x) = vr(n) + vl(n) ∀n ∈ {1, 2, . . . , N}
hN+n(x) = Gvr(n) ∀n ∈ {1, 2, . . . , N}

h2N+n(x) = Gvr(n)−Gvr(n− 2) +
2Λ∆t

6
(vl(n) + 4vl(n− 1) + vl(n− 2)), ∀n ∈ {3, 4, . . . , N}.

(60)

In the above vR(n) = RiL(n) follows from discretizing vR(t) = RiL(t) and

vl(n) =
2Λ∆t

6
(vl(n) + 4vl(n− 1) + vl(n− 2))

follows from discretizing

il(t) =
1

L

∫ t

t−∆t

vl(τ)dτ

via Simpson’s 1/3 rule [12].
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Given the variable and state vector mapping, the Jacobian can be built as follows
The Jacobian of h(x) is determined as follows

H(n, 2 + n) =
∂v(n)

∂vr(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(n, 2 +N + n) =
∂v(n)

∂vl(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 1) =
∂i(n)

∂G
= vr(n) ∀n ∈ {1, 2, . . . , N}

H(N + n, 2 + n) =
∂i(n)

∂vr(n)
= G ∀n ∈ {1, 2, . . . , N}

H(2N + n− 2, 1) =
∂z(n− 2)

∂R
= vr(n)− vr(n− 2) ∀n ∈ {3, 4, . . . , N}

H(2N + n− 2, n) =
∂z(n− 2)

∂vr(n)
= G ∀n ∈ {3, 4, . . . , N}

H(2N + n− 2, n) =
∂z(n− 2)

∂vr(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(2N + n− 2, 2) =
∂z(n− 2)

∂Λ
=

2∆t

6
(vl(n) + 4vl(n− 1) + vl(n− 2))

∀n ∈ {3, 4, . . . , N}

H(2N + n− 2, 2 +N + n) =
∂z(n− 2)

∂vl(n)
=

∆tΛ

3
∀n ∈ {1, 2, . . . , N}

H(2N + n− 2, 1 +N + n) =
∂z(n− 2)

∂vl(n− 1)
=

4∆tΛ

3
∀n ∈ {1, 2, . . . , N}

H(2N + n− 2, N + n) =
∂z(n− 2)

∂vl(n− 2)
=

∆tΛ

3
∀n ∈ {1, 2, . . . , N} (61)

In the above, H(n,m) = 0 unless otherwise specified. The state of the system
can then be solved for by applying eqs 14–16.

3.2 Grounded-Wye Load without Fault

The sampled output of the system illustrated in Fig. 7 is

y =
[
va vb vc ia ib ic za zb zc

]T
(62)

where vφ =
[
vφ(1) vφ(2) · · · vφ(N)

]T
, iφ =

[
iφ(1) iφ(2) · · · iφ(N)

]T
and zφ =

[
zφ(1) zφ(2) · · · zφ(N − 2)

]T
for φ ∈ {a, b, c}. The state for the

system is

x(t) =
[
G Λ vra vrb vrc vla vlb vlc

]T
. (63)

where G = R−1 is the conductance, Λ = L−1 is the reciprocal of the inductance,
vrφ is the voltage across the resistance on phase φ at each time period 1, . . . , N
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Figure 7: Dynamic model for a grounded-wye-connected RL load

and vlφ is the voltage across the inductance on phase φ at each time period
1, . . . , N . The output state-mapping for the system is given by

vφ(n) = vrφ(n) + vlφ(n) ∀φ ∈ {a, b, c}, n ∈ {1, 2, . . . , N}
iφ(n) = Gvrφ(n) ∀φ ∈ {a, b, c}, n ∈ {1, 2, . . . , N}

zφ(n− 2) = G(vrφ(n)− vrφ(n− 2))− 2∆tΛ

6
(vlφ(n) + 4vlφ(n− 1) + vlφ(n− 2))

∀φ ∈ {a, b, c}, n ∈ {3, 4, . . . , N}. (64)

In Eq. 64 zφ(n) follows from discretizing

iφ(t) = Λ

∫ t

t−∆t

vlφ(τ)dτ (65)

via Simpson’s 1/3 rule [12]. The output function h(x) can be written as
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hn(x) = vra(n) + vla(n) ∀n ∈ {1, 2, . . . , N}
hn+N (x) = vrb(n) + vlb(n) ∀n ∈ {1, 2, . . . , N}
hn+2N (x) = vrb(n) + vlb(n) ∀n ∈ {1, 2, . . . , N}
hn+3N (x) = Gvra(n) ∀n ∈ {1, 2, . . . , N}
hn+4N (x) = Gvrb(n) ∀n ∈ {1, 2, . . . , N}
hn+5N (x) = Gvrc(n)) ∀n ∈ {1, 2, . . . , N}

hn+6N (x) = G(vra(n)− vra(n− 2))− 2∆tΛ

6
(vla(n) + 4vla(n− 1) + vla(n− 2)) ∀n ∈ {1, 2, . . . , N}

hn+7N (x) = G(vrb(n)− vrb(n− 2))− 2∆tΛ

6
(vlb(n) + 4vlc(n− 1) + vlb(n− 2)) ∀n ∈ {1, 2, . . . , N}

hn+8N (x) = G(vrc(n)− vrc(n− 2))− 2∆tΛ

6
(vlc(n) + 4vlc(n− 1) + vlc(n− 2)) ∀n ∈ {1, 2, . . . , N}.

(66)

Given the variable and state vector mapping, the Jacobian can be built as follows
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H(n, 2 + n) =
∂va(n)

∂vra(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 2 +N + n) =
∂vb(n)

∂vrb(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(2N + n, 2 + 2N + n) =
∂vc(n)

∂vrc(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(n, 2 + 3N + n) =
∂va(n)

∂vla(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 2 + 4N + n) =
∂vb(n)

∂vlb(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(2N + n, 2 + 5N + n) =
∂vc(n)

∂vlc(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(3N + n, 1) =
∂ia(n)

∂G
= vra(n) ∀n ∈ {1, 2, . . . , N}

H(4N + n, 1) =
∂ib(n)

∂G
= vrb(n) ∀n ∈ {1, 2, . . . , N}

H(5N + n, 1) =
∂ic(n)

∂G
= vrc(n) ∀n ∈ {1, 2, . . . , N}

H(3N + n, 2 + n) =
∂ia(n)

∂vra(n)
= G ∀n ∈ {1, 2, . . . , N}

H(4N + n, 2 +N + n) =
∂ib(n)

∂vrb(n)
= G ∀n ∈ {1, 2, . . . , N}

H(5N + n, 2 + 2N + n) =
∂ic(n)

∂vrc(n)
= G ∀n ∈ {1, 2, . . . , N}

H(6N + n− 2, 1) =
∂za(n− 2)

∂G
= vra(n)− vra(n− 2) ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 1) =
∂zb(n− 2)

∂G
= vrb(n)− vrb(n− 2) ∀n ∈ {3, 4, . . . , N}

H(8N + n− 2, 1) =
∂zc(n− 2)

∂G
= vrc(n)− vrc(n− 2) ∀n ∈ {3, 4, . . . , N}

H(6N + n− 2, 2 + n) =
∂za(n− 2)

∂vra(n)
= G ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 2 +N + n) =
∂zb(n− 2)

∂vrb(n)
= G ∀n ∈ {3, 4, . . . , N}

H(8N + n− 2, 2 + 2N + n) =
∂zc(n− 2)

∂vrc(n)
= G ∀n ∈ {3, 4, . . . , N}
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H(6N + n− 2, n) =
∂za(n− 2)

∂vra(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, N + n) =
∂zb(n− 2)

∂vrb(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(8N + n− 2, 2N + n) =
∂zc(n− 2)

∂vrc(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(6N + n− 2, 2) =
∂za(n− 2)

∂Λ
= −∆t

3
(vla(n) + 4vla(n− 1) + vla(n− 2))

∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 2) =
∂zb(n− 2)

∂Λ
= −∆t

3
(vlb(n) + 4vlb(n− 1) + vlb(n− 2))

∀n ∈ {3, 4 . . . , N}

H(8N + n− 2, 2) =
∂zc(n− 2)

∂Λ
= −∆t

3
(vlc(n) + 4vlc(n− 1) + vlc(n− 2))

∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 2 + 3N + n) =
∂za(n− 2)

∂vla(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 2 + 4N + n) =
∂zb(n− 2)

∂vlb(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(8N + n− 2, 2 + 5N + n) =
∂zc(n− 2)

∂vlc(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 3N + n) =
∂za(n− 2)

∂vla(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 4N + n) =
∂zb(n− 2)

∂vlb(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 5N + n) =
∂zc(n− 2)

∂vlc(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 3N + n) =
∂za(n− 2)

∂vla(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 4N + n) =
∂zb(n− 2)

∂vlb(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(8N + n− 2, 5N + n) =
∂zc(n− 2)

∂vlc(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}. (67)

The state of the system can then be solved for by applying eqs 14–16.

3.3 Grounded-Wye Load with Line-Ground Fault

The sampled output of the system illustrated in Fig. 8 is

y =
[
va vb vc ia ib ic, zb zc

]T
. (68)
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Figure 8: Dynamic model for a grounded-wye-connected RL load with a line-
ground fault

Note that there are no za(n) output variables as the reactive impedance on
phase A is large compared to the parallel fault conductance Gf . The state for
the system is

x(t) =
[
G Λ Gf vra vrb vrc vlb vlc

]T
(69)

where Gf = R−1 is the conductance and the remaining states are the same
as those in that of the grounded-wye no-fault state in eq. 63. The output
state-mapping for the system is given by

vφ(n) =

{
Vrφ(n) ∀n ∈ {1, 2, . . . , N} φ = a,

vrφ(n) + vlφ(n) ∀n ∈ {1, 2, . . . , N} φ ∈ {b, c},

iφ(n) = Gvrφ(n) ∀φ ∈ {a, b, c}, n ∈ {1, 2, . . . , N}

zφ(n− 2) = G(vrφ(n)− vrφ(n− 2))− 2∆tΛ

6
(vlφ(n) + 4vlφ(n− 1) + vlφ(n− 2))

∀φ ∈ {b, c}, n ∈ {3, 4 . . . , N}. (70)

The output function h(x) can be written as
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hn(x) = vra(n) ∀n ∈ {1, 2, . . . , N}
hn+N (x) = vrb(n) + vlb(n) ∀n ∈ {1, 2, . . . , N}
hn+2N (x) = vrb(n) + vlb(n) ∀n ∈ {1, 2, . . . , N}
hn+3N (x) = Gvra(n) ∀n ∈ {1, 2, . . . , N}
hn+4N (x) = Gvrb(n) ∀n ∈ {1, 2, . . . , N}
hn+5N (x) = Gvrc(n)) ∀n ∈ {1, 2, . . . , N}

hn+6N (x) = G(vrb(n)− vrb(n− 2))− 2∆tΛ

6
(vlb(n) + 4vlc(n− 1) + vlb(n− 2)) ∀n ∈ {1, 2, . . . , N}

hn+7N (x) = G(vrc(n)− vrc(n− 2))− 2∆tΛ

6
(vlc(n) + 4vlc(n− 1) + vlc(n− 2)) ∀n ∈ {1, 2, . . . , N}.

(71)

Given the variable and state vector mapping, the Jacobian can be built as follows
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H(n, 3 + n) =
∂va(n)

∂vra(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 3 +N + n) =
∂vb(n)

∂vrb(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(2N + n, 3 + 2N + n) =
∂vc(n)

∂vrc(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 3 + 3N + n) =
∂vb(n)

∂vlb(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(2N + n, 3 + 4N + n) =
∂vc(n)

∂vlc(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(3N + n, 1) =
∂ia(n)

∂G
= vra(n) ∀n ∈ {1, 2, . . . , N}

H(4N + n, 1) =
∂ib(n)

∂G
= vrb(n) ∀n ∈ {1, 2, . . . , N}

H(5N + n, 1) =
∂ic(n)

∂G
= vrc(n) ∀n ∈ {1, 2, . . . , N}

H(3N + n, 3 + n) =
∂ia(n)

∂vra(n)
= G ∀n ∈ {1, 2, . . . , N}

H(4N + n, 3 +N + n) =
∂ib(n)

∂vrb(n)
= G ∀n ∈ {1, 2, . . . , N}

H(5N + n, 2 + 2N + n) =
∂ic(n)

∂vrc(n)
= G ∀n ∈ {1, 2, . . . , N}

H(6N + n− 2, 1) =
∂zb(n− 2)

∂G
= vrb(n)− vrb(n− 2) ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 1) =
∂zc(n− 2)

∂G
= vrc(n)− vrc(n− 2) ∀n ∈ {3, 4, . . . , N}

H(6N + n− 2, 2 +N + n) =
∂zb(n− 2)

∂vrb(n)
= G ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 2 + 2N + n) =
∂zc(n− 2)

∂vrc(n)
= G ∀n ∈ {3, 4, . . . , N}
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H(6N + n− 2, N + n) =
∂zb(n− 2)

∂vrb(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 2N + n) =
∂zc(n− 2)

∂vrc(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 2) =
∂zb(n− 2)

∂Λ
= −∆t

3
(vlb(n) + 4vlb(n− 1) + vlb(n− 2))

∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 2) =
∂zc(n− 2)

∂Λ
= −∆t

3
(vlc(n) + 4vlc(n− 1) + vlc(n− 2))

∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 3 + 3N + n) =
∂zb(n− 2)

∂vlb(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 3 + 4N + n) =
∂zc(n− 2)

∂vlc(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 2 + 3N + n) =
∂zb(n− 2)

∂vlb(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 2 + 4N + n) =
∂zc(n− 2)

∂vlc(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 3N + n) =
∂zb(n− 2)

∂vlb(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 1 + 4N + n) =
∂zc(n− 2)

∂vlc(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}. (72)

3.4 Grounded-Wye Load with Line-Line Fault

The sampled output of the system illustrated in Fig. 9 is

y =
[
va vb vc ia ib ic, za zb zc

]T
(73)

The output state-mapping for the system is given by

vφ(n) = vrφ(n) + vlφ(n) ∀n ∈ {1, 2, . . . , N}, φ ∈ {a, b, c},

iφ(n) =


Gvra(n) +Gf (vra(n) + vla(n)− vrb(n)− vlb(n)) ∀n ∈ {1, 2, . . . , N} φ = a

Gvrb(n)−Gf (vra(n) + vla(n)− vrb(n)− vlb(n)) ∀n ∈ {1, 2, . . . , N} φ = b

Gvrc(n) ∀ ∈ [1, 2, . . . , N ] φ = c

zφ(n− 2) = G(vrφ(n)− vrφ(n− 2))− 2∆tΛ

6
(vlφ(n) + 4vlφ(n− 1) + vlφ(n− 2))

∀φ ∈ {b, c}, n ∈ {3, 4 . . . , N}. (74)
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Figure 9: Dynamic model for a grounded-wye-connected RL load with a line-line
fault

The output function h(x) can be written as

hn(x) = vra(n) + vla(n) ∀n ∈ {1, 2, . . . , N}
hn+N (x) = vrb(n) + vlb(n) ∀n ∈ {1, 2, . . . , N}
hn+2N (x) = vrb(n) + vlb(n) ∀n ∈ {1, 2, . . . , N}
hn+3N (x) = Gvra(n) +Gf (vra(n) + vla(n)− vrb(n)− vlb(n)) ∀n ∈ {1, 2, . . . , N}
hn+4N (x) = Gvrb(n)−Gf (vra(n) + vla(n)− vrb(n)− vlb(n)) ∀n ∈ {1, 2, . . . , N}
hn+5N (x) = Gvrc(n)) ∀n ∈ {1, 2, . . . , N}

hn+6N (x) = G(vra(n)− vra(n− 2))− 2∆tΛ

6
(vla(n) + 4vla(n− 1) + vla(n− 2)) ∀n ∈ {1, 2, . . . , N}

hn+7N (x) = G(vrb(n)− vrb(n− 2))− 2∆tΛ

6
(vlb(n) + 4vlc(n− 1) + vlb(n− 2)) ∀n ∈ {1, 2, . . . , N}

hn+8N (x) = G(vrc(n)− vrc(n− 2))− 2∆tΛ

6
(vlc(n) + 4vlc(n− 1) + vlc(n− 2)) ∀n ∈ {1, 2, . . . , N}

(75)

Given the variable and state vector mapping, the Jacobian can be built as follows
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H(n, 3 + n) =
∂va(n)

∂vra(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 3 +N + n) =
∂vb(n)

∂vrb(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(2N + n, 3 + 2N + n) =
∂vc(n)

∂vrc(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(n, 3 + 3N + n) =
∂va(n)

∂vla(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 3 + 4N + n) =
∂vb(n)

∂vlb(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(2N + n, 3 + 5N + n) =
∂vc(n)

∂vlc(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(3N + n, 1) =
∂ia(n)

∂Gf
= vra(n) ∀n ∈ {1, 2, . . . , N}

H(4N + n, 1) =
∂ib(n)

∂Gf
= vrb(n) ∀n ∈ {1, 2, . . . , N}

H(5N + n, 1) =
∂ic(n)

∂G
= vrc(n) ∀n ∈ {1, 2, . . . , N}

H(3N + n, 3) =
∂ia(n)

∂Gf
= (vra(n) + vla(n))− (vrb(n) + vrb(n)) ∀n ∈ {1, 2, . . . , N}

H(4N + n, 3) =
∂ib(n)

∂Gf
= −(vra(n) + vla(n)) + (vrb(n) + vrb(n)) ∀n ∈ {1, 2, . . . , N}

H(3N + n, 3 + n) =
∂ia(n)

∂vra(n)
= G+Gf ∀n ∈ {1, 2, . . . , N}

H(3N + n, 3 + 3N + n) =
∂ia(n)

∂vla(n)
= Gf ∀n ∈ {1, 2, . . . , N}

H(3N + n, 3 +N + n) =
∂ia(n)

∂vrb(n)
= −Gf ∀n ∈ {1, 2, . . . , N}

H(3N + n, 3 + 4N + n) =
∂ia(n)

∂vlb(n)
= −Gf ∀n ∈ {1, 2, . . . , N}

(76)
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H(4N + n, 3 + n) =
∂ib(n)

∂vra(n)
= −Gf ∀n ∈ {1, 2, . . . , N}

H(4N + n, 3 + 3N + n) =
∂ib(n)

∂vla(n)
= −Gf ∀n ∈ {1, 2, . . . , N}

H(4N + n, 3 +N + n) =
∂ib(n)

∂vrb(n)
= G+Gf ∀n ∈ {1, 2, . . . , N}

H(4N + n, 3 + 4N + n) =
∂ib(n)

∂vlb(n)
= Gf ∀n ∈ {1, 2, . . . , N}

H(4N + n, 3 +N + n) =
∂ib(n)

∂vrb(n)
= G ∀n ∈ {1, 2, . . . , N}

H(5N + n, 3 + 2N + n) =
∂ic(n)

∂vrc(n)
= G ∀n ∈ {1, 2, . . . , N}

H(6N + n− 2, 1) =
∂za(n− 2)

∂G
= vra(n)− vra(n− 2) ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 1) =
∂zb(n− 2)

∂G
= vrb(n)− vrb(n− 2) ∀n ∈ {3, 4, . . . , N}

H(8N + n− 2, 1) =
∂zc(n− 2)

∂G
= vrc(n)− vrc(n− 2) ∀n ∈ {3, 4, . . . , N}

H(6N + n− 2, 3 + n) =
∂za(n− 2)

∂vra(n)
= G ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 3 +N + n) =
∂zb(n− 2)

∂vrb(n)
= G ∀n ∈ {3, 4, . . . , N}

H(8N + n− 2, 3 + 2N + n) =
∂zc(n− 2)

∂vrc(n)
= G ∀n ∈ {3, 4, . . . , N}

H(6N + n− 2, n) =
∂za(n− 2)

∂vra(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, N + n) =
∂zb(n− 2)

∂vrb(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(8N + n− 2, 2N + n) =
∂zc(n− 2)

∂vrc(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(6N + n− 2, 2) =
∂za(n− 2)

∂Λ
= −∆t

3
(vla(n) + 4vla(n− 1) + vla(n− 2))

∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 2) =
∂zb(n− 2)

∂Λ
= −∆t

3
(vlb(n) + 4vlb(n− 1) + vlb(n− 2))

∀n ∈ {3, 4 . . . , N}

H(8N + n− 2, 2) =
∂zc(n− 2)

∂Λ
= −∆t

3
(vlc(n) + 4vlc(n− 1) + vlc(n− 2))

∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 2 + 3N + n) =
∂za(n− 2)

∂vla(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}
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H(7N + n− 2, 2 + 4N + n) =
∂zb(n− 2)

∂vlb(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(8N + n− 2, 2 + 5N + n) =
∂zc(n− 2)

∂vlc(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 3N + n) =
∂za(n− 2)

∂vla(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 4N + n) =
∂zb(n− 2)

∂vlb(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 5N + n) =
∂zc(n− 2)

∂vlc(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 3N + n) =
∂za(n− 2)

∂vla(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 4N + n) =
∂zb(n− 2)

∂vlb(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(8N + n− 2, 5N + n) =
∂zc(n− 2)

∂vlc(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}. (77)

The state of the system can then be solved for by applying eqs 14–16.

3.5 Delta Load without Fault

The sampled output of the system illustrated in Fig. 11 is

y =
[
vab vbc vca ia ib ic, zab zbc zca

]T
. (78)

The state for the system is

x(t) =
[
G Λ,vrab vrbc vrca vlab vlbc vlca

]T
. (79)

The output state-mapping for the system is given by

vψ(n) = vrψ(n) + vlψ(n) ∀n ∈ {1, 2, . . . , N}, φ ∈ {ab, bc, ca},
ia(n) = G(vrab(n)− vrca(n))

ib(n) = G(vrbc(n)− vrab(n))

ic(n) = G(vrca(n)− vrbc(n))

zψ(n− 2) = G(vrψ(n)− vrψ(n− 2))− 2∆tΛ

6
(vlψ(n) + 4vlψ(n− 1) + vlψ(n− 2))

∀ψ ∈ {ab, bc, ca}, n ∈ {3, 4 . . . , N}. (80)

The output function h(x) can be written as
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hn(x) = vrab(n) + vlab(n) ∀n ∈ {1, 2, . . . , N}
hn+N (x) = vrbc(n) + vlbc(n) ∀n ∈ {1, 2, . . . , N}
hn+2N (x) = vrca(n) + vlca(n) ∀n ∈ {1, 2, . . . , N}
hn+3N (x) = G(vrab(n)− vrca(n)) ∀n ∈ {1, 2, . . . , N}
hn+4N (x) = G(vrbc(n)− vrab(n)) ∀n ∈ {1, 2, . . . , N}
hn+5N (x) = G(vrca(n)− vrbc(n)) ∀n ∈ {1, 2, . . . , N}

hn+6N (x) = G(vrab(n)− vrab(n− 2))− 2∆tΛ

6
(vlab(n) + 4vlab(n− 1) + vlab(n− 2)) ∀n ∈ {1, 2, . . . , N}

hn+7N (x) = G(vrbc(n)− vrbc(n− 2))− 2∆tΛ

6
(vlbc(n) + 4vlbc(n− 1) + vlbc(n− 2)) ∀n ∈ {1, 2, . . . , N}

hn+8N (x) = G(vrca(n)− vrca(n− 2))− 2∆tΛ

6
(vlca(n) + 4vlca(n− 1) + vlca(n− 2)) ∀n ∈ {1, 2, . . . , N}

(81)

Given the variable and state vector mapping, the Jacobian can be built as follows
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Figure 10: Dynamic model for a delta-connected RL load
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H(n, 2 + n) =
∂vab(n)

∂vrab(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 2 +N + n) =
∂vbc(n)

∂vrbc(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(2N + n, 2 + 2N + n) =
∂vca(n)

∂vrca(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(n, 2 + 3N + n) =
∂vab(n)

∂vlab(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 2 + 4N + n) =
∂vbc(n)

∂vlbc(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(2N + n, 2 + 5N + n) =
∂vca(n)

∂vlca(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(3N + n, 1) =
∂ia(n)

∂G
= vrab(n)− vrca(n) ∀n ∈ {1, 2, . . . , N}

H(4N + n, 1) =
∂ib(n)

∂G
= vrbc(n)− vrab(n) ∀n ∈ {1, 2, . . . , N}

H(5N + n, 1) =
∂ic(n)

∂G
= vrca(n)− vrbc(n) ∀n ∈ {1, 2, . . . , N}

H(3N + n, 2 + n) =
∂ia(n)

∂vrab(n)
= G ∀n ∈ {1, 2, . . . , N}

H(3N + n, 2 + 2N + n) =
∂ia(n)

∂vrca(n)
= −G ∀n ∈ {1, 2, . . . , N}

H(4N + n, 2 +N + n) =
∂ib(n)

∂vrbc(n)
= G ∀n ∈ {1, 2, . . . , N}

H(4N + n, 2 + n) =
∂ib(n)

∂vrab(n)
= −G ∀n ∈ {1, 2, . . . , N}

H(5N + n, 2 + 2N + n) =
∂ic(n)

∂vrca(n)
= G ∀n ∈ {1, 2, . . . , N}

H(5N + n, 2 +N + n) =
∂ic(n)

∂vrbc(n)
= −G ∀n ∈ {1, 2, . . . , N}

H(6N + n− 2, 1) =
∂zab(n− 2)

∂G
= vrab(n)− vrab(n− 2) ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 1) =
∂zbc(n− 2)

∂G
= vrbc(n)− vrbc(n− 2) ∀n ∈ {3, 4, . . . , N}

H(8N + n− 2, 1) =
∂zca(n− 2)

∂G
= vrca(n)− vrca(n− 2) ∀n ∈ {3, 4, . . . , N}

(82)

33



H(6N + n− 2, 2 + n) =
∂zab(n− 2)

∂vrab(n)
= G ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 2 +N + n) =
∂zbc(n− 2)

∂vrbc(n)
= G ∀n ∈ {3, 4, . . . , N}

H(8N + n− 2, 2 + 2N + n) =
∂zca(n− 2)

∂vrca(n)
= G ∀n ∈ {3, 4, . . . , N}

H(6N + n− 2, n) =
∂zab(n− 2)

∂vrab(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, N + n) =
∂zbc(n− 2)

∂vrbc(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(8N + n− 2, 2N + n) =
∂zca(n− 2)

∂vrca(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(6N + n− 2, 2) =
∂zab(n− 2)

∂Λ
= −∆t

3
(vlab(n) + 4vlab(n− 1) + vlab(n− 2))

∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 2) =
∂zbc(n− 2)

∂Λ
= −∆t

3
(vlbc(n) + 4vlbc(n− 1) + vlbc(n− 2))

∀n ∈ {3, 4 . . . , N}

H(8N + n− 2, 2) =
∂zca(n− 2)

∂Λ
= −∆t

3
(vlca(n) + 4vlca(n− 1) + vlca(n− 2))

∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 2 + 3N + n) =
∂zab(n− 2)

∂vlab(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 2 + 4N + n) =
∂zbc(n− 2)

∂vlbc(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(8N + n− 2, 2 + 5N + n) =
∂zca(n− 2)

∂vlca(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 3N + n) =
∂zab(n− 2)

∂vlab(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 4N + n) =
∂zbc(n− 2)

∂vlbc(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 5N + n) =
∂zca(n− 2)

∂vlca(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 3N + n) =
∂zab(n− 2)

∂vlab(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 4N + n) =
∂zbc(n− 2)

∂vlbc(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(8N + n− 2, 5N + n) =
∂zca(n− 2)

∂vlca(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}.

(83)
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The state of the system can then be solved for by applying eqs 14–16.

3.6 Delta Load with Line-Line Fault

The sampled output of the system illustrated in Fig. 9 is

y =
[
vab vbc vca ia ib ic, zbc zca

]T
. (84)

Note that there are no zab(n) output variables as the reactive impedance on
phase a is large compared to the parallel fault conductance Gf . The state for
the system is

x(t) =
[
G Λ Gf vrab vrbc vrca vlbc vlca

]T
. (85)

where Gf = R−1 is the conductance and the remaining states are the same as
those in that of the delta no-fault state in eq. 79. The output state-mapping
for the system is given by

vψ(n) =

{
Vrψ(n) ∀ ∈ [1, 2, . . . , N ] ψ = ab,

vrψ(n) + vlψ(n) ∀ ∈ [1, 2, . . . , N ] ψ ∈ {b, c},

ia(n) = Gfvrab(n)−Gvrca(n)

ib(n) = Gvrbc(n)−Gfvrab(n)

ic(n) = G(vrca(n)− vrbc(n))

zψ(n− 2) = G(vrψ(n)− vrψ(n− 2))− 2∆tΛ

6
(vlψ(n) + 4vlψ(n− 1) + vlψ(n− 2))

∀ψ ∈ {bc, ca}, n ∈ {3, 4 . . . , N} (86)

hn(x) = vrab(n) ∀n ∈ {1, 2, . . . , N}
hn+N (x) = vrbc(n) + vlbc(n) ∀n ∈ {1, 2, . . . , N}
hn+2N (x) = vrca(n) + vlca(n) ∀n ∈ {1, 2, . . . , N}
hn+3N (x) = Gvra(n) ∀n ∈ {1, 2, . . . , N}
hn+4N (x) = Gvrb(n) ∀n ∈ {1, 2, . . . , N}
hn+5N (x) = Gvrc(n)) ∀n ∈ {1, 2, . . . , N}

hn+6N (x) = G(vrbc(n)− vrbc(n− 2))− 2∆tΛ

6
(vlbc(n) + 4vlbc(n− 1) + vlbc(n− 2)) ∀n ∈ {1, 2, . . . , N}

hn+7N (x) = G(vrca(n)− vrca(n− 2))− 2∆tΛ

6
(vlca(n) + 4vlca(n− 1) + vlca(n− 2)) ∀n ∈ {1, 2, . . . , N}.

(87)

Given the variable and state vector mapping, the Jacobian can be built as follows
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Figure 11: Dynamic model for a delta-connected RL load with a line-line fault
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H(n, 3 + n) =
∂vab(n)

∂vrab(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 3 +N + n) =
∂vbc(n)

∂vrbc(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(2N + n, 3 + 2N + n) =
∂vca(n)

∂vrca(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 3 + 3N + n) =
∂vbc(n)

∂vlbc(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(2N + n, 3 + 4N + n) =
∂vca(n)

∂vlca(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(3N + n, 1) =
∂ia(n)

∂G
= vrca(n) ∀n ∈ {1, 2, . . . , N}

H(4N + n, 1) =
∂ib(n)

∂G
= vrbc(n) ∀n ∈ {1, 2, . . . , N}

H(5N + n, 1) =
∂ic(n)

∂G
= vrca(n)− vrbc(n) ∀n ∈ {1, 2, . . . , N}

H(3N + n, 3) =
∂ia(n)

∂Gf
= vrab(n) ∀n ∈ {1, 2, . . . , N}

H(4N + n, 3) =
∂ib(n)

∂GF
= −vrab(n) ∀n ∈ {1, 2, . . . , N}

H(3N + n, 3 + n) =
∂ia(n)

∂vrab(n)
= Gf ∀n ∈ {1, 2, . . . , N}

H(3N + n, 3 +N + n) =
∂ia(n)

∂vrbc(n)
= −G ∀n ∈ {1, 2, . . . , N}

H(4N + n, 3 + n) =
∂ib(n)

∂vrab(n)
= −Gf ∀n ∈ {1, 2, . . . , N}

H(4N + n, 3 +N + n) =
∂ib(n)

∂vrbc(n)
= G ∀n ∈ {1, 2, . . . , N}

H(5N + n, 2 + 2 +N + n) =
∂ic(n)

∂vrbc(n)
= −G ∀n ∈ {1, 2, . . . , N}

H(5N + n, 3 + 2N + n) =
∂ic(n)

∂vrca(n)
= G ∀n ∈ {1, 2, . . . , N}

H(6N + n− 2, 1) =
∂zbc(n− 2)

∂G
= vrbc(n)− vrbc(n− 2) ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 1) =
∂zca(n− 2)

∂G
= vrca(n)− vrca(n− 2) ∀n ∈ {3, 4, . . . , N}

H(6N + n− 2, 2 +N + n) =
∂zbc(n− 2)

∂vrbc(n)
= G ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 2 + 2N + n) =
∂zca(n− 2)

∂vrca(n)
= G ∀n ∈ {3, 4, . . . , N}
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H(6N + n− 2, N + n) =
∂zbc(n− 2)

∂vrbc(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 2N + n) =
∂zca(n− 2)

∂vrca(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(6N + n− 2, 2) =
∂zbc(n− 2)

∂Λ
= −∆t

3
(vlbc(n) + 4vlbc(n− 1) + vlbc(n− 2))

∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 2) =
∂zca(n− 2)

∂Λ
= −∆t

3
(vlca(n) + 4vlca(n− 1) + vlca(n− 2))

∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 3 + 3N + n) =
∂zbc(n− 2)

∂vlbc(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 3 + 4N + n) =
∂zca(n− 2)

∂vlca(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 2 + 3N + n) =
∂zbc(n− 2)

∂vlbc(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 2 + 4N + n) =
∂zca(n− 2)

∂vlca(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 3N + n) =
∂zbc(n− 2)

∂vlbc(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 1 + 4N + n) =
∂zca(n− 2)

∂vlca(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}.

(88)

The state of the system can then be solved for by applying eqs 14–16.

3.7 Delta Load with Line-Ground Fault

The sampled output of the system illustrated in Fig. 12 is

y =
[
vab vbc vca va ia ib ic, zab zbc zca

]T
. (89)

The state for the system is

x(t) =
[
G Λ Gf vrab vrbc vrca vlab vlbc vlca vf

]T
. (90)

where Gf = R−1 is the fault conductance, vf is the voltage across the fault and
the remaining states are the same as those in that of the delta no-fault state in
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eq. 79. The output state-mapping for the system is given by

vψ(n) = vrψ(n) + vlψ(n) ∀n ∈ {1, 2, . . . , N}, φ ∈ {ab, bc, ca},
va(n) = vf (n) (91)

ia(n) = G(vrab(n)− vrca(n)) +Gfvf (n)

ib(n) = G(vrbc(n)− vrab(n))

ic(n) = G(vrca(n)− vrbc(n))

(92)

zψ(n− 2) = G(vrψ(n)− vrψ(n− 2))− 2∆tΛ

6
(vlψ(n) + 4vlψ(n− 1) + vlψ(n− 2))

∀ψ ∈ {ab, bc, ca}, n ∈ {3, 4 . . . , N}. (93)

The output function h(x) can be written as

hn(x) = vrab(n) + vlab(n) ∀n ∈ {1, 2, . . . , N}
hn+N (x) = vrbc(n) + vlbc(n) ∀n ∈ {1, 2, . . . , N}
hn+2N (x) = vrca(n) + vlca(n) ∀n ∈ {1, 2, . . . , N}
hn+3N (x) = vf (n) ∀n ∈ {1, 2, . . . , N}
hn+4N (x) = G(vrab(n)− vrca(n)) +Gfvf (n) ∀n ∈ {1, 2, . . . , N}
hn+5N (x) = G(vrbc(n)− vrab(n)) ∀n ∈ {1, 2, . . . , N}
hn+6N (x) = G(vrca(n)− vrbc(n)) ∀n ∈ {1, 2, . . . , N}

hn+7N (x) = G(vrab(n)− vrab(n− 2))− 2∆tΛ

6
(vlab(n) + 4vlab(n− 1) + vlab(n− 2)) ∀n ∈ {1, 2, . . . , N}

hn+8N (x) = G(vrbc(n)− vrbc(n− 2))− 2∆tΛ

6
(vlbc(n) + 4vlbc(n− 1) + vlbc(n− 2)) ∀n ∈ {1, 2, . . . , N}

hn+9N (x) = G(vrca(n)− vrca(n− 2))− 2∆tΛ

6
(vlca(n) + 4vlca(n− 1) + vlca(n− 2)) ∀n ∈ {1, 2, . . . , N}.

(94)

Given the variable and state vector mapping, the Jacobian can be built as follows
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Figure 12: Dynamic model for a delta-connected RL load with a line-ground
fault
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H(n, 2 + n) =
∂vab(n)

∂vrab(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 2 +N + n) =
∂vbc(n)

∂vrbc(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(2N + n, 2 + 2N + n) =
∂vca(n)

∂vrca(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(n, 2 + 3N + n) =
∂vab(n)

∂vlab(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(N + n, 2 + 4N + n) =
∂vbc(n)

∂vlbc(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(2N + n, 2 + 5N + n) =
∂vca(n)

∂vlca(n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(3N + n, 2 + 6N + n) =
∂va(n)

∂vf (n)
= 1 ∀n ∈ {1, 2, . . . , N}

H(4N + n, 1) =
∂ia(n)

∂G
= vrab(n)− vrca(n) ∀n ∈ {1, 2, . . . , N}

H(5N + n, 1) =
∂ib(n)

∂G
= vrbc(n)− vrab(n) ∀n ∈ {1, 2, . . . , N}

H(6N + n, 1) =
∂ic(n)

∂G
= vrca(n)− vrbc(n) ∀n ∈ {1, 2, . . . , N}

H(4N + n, 3) =
∂ia(n)

∂Gf
= vf (n) ∀n ∈ {1, 2, . . . , N}

H(4N + n, 2 + n) =
∂ia(n)

∂vrab(n)
= G ∀n ∈ {1, 2, . . . , N}

H(4N + n, 2 + 2N + n) =
∂ia(n)

∂vrca(n)
= −G ∀n ∈ {1, 2, . . . , N}

H(4N + n, 3 + 6N + n) =
∂ia(n)

∂vf (n)
= Gf ∀n ∈ {1, 2, . . . , N}

H(5N + n, 2 +N + n) =
∂ib(n)

∂vrbc(n)
= G ∀n ∈ {1, 2, . . . , N}

H(5N + n, 2 + n) =
∂ib(n)

∂vrab(n)
= −G ∀n ∈ {1, 2, . . . , N}

H(6N + n, 2 + 2N + n) =
∂ic(n)

∂vrca(n)
= G ∀n ∈ {1, 2, . . . , N}

H(6N + n, 2 +N + n) =
∂ic(n)

∂vrbc(n)
= −G ∀n ∈ {1, 2, . . . , N}

H(7N + n− 2, 1) =
∂zab(n− 2)

∂G
= vrab(n)− vrab(n− 2) ∀n ∈ {3, 4, . . . , N}

H(8N + n− 2, 1) =
∂zbc(n− 2)

∂G
= vrbc(n)− vrbc(n− 2) ∀n ∈ {3, 4, . . . , N}

H(9N + n− 2, 1) =
∂zca(n− 2)

∂G
= vrca(n)− vrca(n− 2) ∀n ∈ {3, 4, . . . , N}

(95)
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H(6N + n− 2, 2 + n) =
∂zab(n− 2)

∂vrab(n)
= G ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, 2 +N + n) =
∂zbc(n− 2)

∂vrbc(n)
= G ∀n ∈ {3, 4, . . . , N}

H(8N + n− 2, 2 + 2N + n) =
∂zca(n− 2)

∂vrca(n)
= G ∀n ∈ {3, 4, . . . , N}

H(6N + n− 2, n) =
∂zab(n− 2)

∂vrab(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(7N + n− 2, N + n) =
∂zbc(n− 2)

∂vrbc(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(8N + n− 2, 2N + n) =
∂zca(n− 2)

∂vrca(n− 2)
= −G ∀n ∈ {3, 4, . . . , N}

H(6N + n− 2, 2) =
∂zab(n− 2)

∂Λ
= −∆t

3
(vlab(n) + 4vlab(n− 1) + vlab(n− 2))

∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 2) =
∂zbc(n− 2)

∂Λ
= −∆t

3
(vlbc(n) + 4vlbc(n− 1) + vlbc(n− 2))

∀n ∈ {3, 4 . . . , N}

H(8N + n− 2, 2) =
∂zca(n− 2)

∂Λ
= −∆t

3
(vlca(n) + 4vlca(n− 1) + vlca(n− 2))

∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 2 + 3N + n) =
∂zab(n− 2)

∂vlab(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 2 + 4N + n) =
∂zbc(n− 2)

∂vlbc(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(8N + n− 2, 2 + 5N + n) =
∂zca(n− 2)

∂vlca(n)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 3N + n) =
∂zab(n− 2)

∂vlab(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 4N + n) =
∂zbc(n− 2)

∂vlbc(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 1 + 5N + n) =
∂zca(n− 2)

∂vlca(n− 1)
= −4∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(6N + n− 2, 3N + n) =
∂zab(n− 2)

∂vlab(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(7N + n− 2, 4N + n) =
∂zbc(n− 2)

∂vlbc(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}

H(8N + n− 2, 5N + n) =
∂zca(n− 2)

∂vlca(n− 2)
= −∆tΛ

3
∀n ∈ {3, 4 . . . , N}.

(96)
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The state of the system can then be solved for by applying eqs 14–16.

4 Experiments

Three diferent case-study sytems are considered:

1. A single-phase load

2. a grounded-wye constant-impedance load

3. a delta-connected constant impedance load.

These three load configurations are studied for both phasor state estimation
and DSE. In both cases, random noise with an amplitude of approximately 10
% of the signal peak is added to the measurements to verify noise immunity of
the methods.

4.1 Phasor Implementation

For the single-phase phasor model, it is assumed that the source voltage is 240
V and the load impedance R + jX is such that it draws a current of 10 −
j5 A. For the three-phase phasor models, both line-ground and line-line fault
configurations are considered. These assume that the voltage source is 480 V
rms line-line and the load impedance R+jX is such that it draws 30−i15 A per
phase. The fault resistance Rf is selected such that Rf = R/10. Measured data
is obtained by assuming a balanced input voltage and calculating the current
by multipling the input voltage phasor vector by the admittance matrix of the
load-fault network. This is also the case for the single-phase dynamic load,
though in that case the measured phasor voltage is converted to instantaneous
voltage to obtain the input for DSE.

4.2 Dynamic Implementation

The first system is solved ad-hoc assuming an ideal source with the parameters
listed in Table 1. The latter two systems are modeled in the MATLAB/Simulink
SimScape Specialized Power Systems library with the parameters listed in Ta-
bles 2 and 3. In the latter two systems, the load is connected to a 480 V rms
line-line source through 1000 ft of 1/0 AWG quadruplex overhead service drop
cable. Three different cases are considered:

1. No-fault

2. Line-ground fault

3. Line-line fault.
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Table 1: Parameters for Single-Phase Dynamic Load

Variable Symbol Value Units

Total load real power P 10 kW
Total load reactive power Q 5 kVAR
Line-line RMS source voltage Vll 480 V
Simulation time T 10 ms
Sample rate Ts 100 µs

Table 2: Common Parameters for Three-Phase Dynamic Models

Variable Symbol Value Units

Total load real power P 10 kW
Total load reactive power Q 5 kVAR
Line-line RMS source voltage Vll 240 V
Source resistance Rs 19.2 Ω
Source inductance Ls 25.465 mH
Fault resistance Rf 1 mΩ
Ground resistance Rg 10 mΩ
Cable positive-sequence resistance Rc 183.7 mΩ
Cable positive-sequence reactance Lc 26.6 mΩ
Simulation time T 200 ms
Fault start time Tf 50 ms

Table 3: Varying Parameters for Three-Phase Dynamic Models

Variable Grounded-Wye Delta

Load resistance R (Ω) 18.432 55.296
Load inductance L (mH) 24.457 73.3

4.3 Grounded-Wye Load

For the grounded-wye case, the system used in Fig. 13 is used. The load consists
of three balanced series RL branches wired in a grounded-wye configuration.
This system has the parameters listed in Tables 2 and 3. Note that the total
fault resistance for the line-ground fault is Rf + Rg = 110 mΩ, while the total
fault resistance for the line-line fault is 2Rf = 200 mΩ.

4.4 Delta Load

For the delta-connected case, the system used in Fig. 14 is used. The load
consists of three balanced series RL branches wired in a delta configuration.
This system has the parameters listed in Tables 2 and 3. Note that the total
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Figure 13: Simulink model for a grounded-wye load with faults

fault resistance for the line-ground fault is Rf + Rg = 110 mΩ, while the total
fault resistance for the line-line fault is 2Rf = 200 mΩ.

5 Results

This section presents results of state estimation for the single-phase, grounded-
wye and delta load configurations for both the phasor and dynamic cases. Re-
sults for the phasor models are presented in Table 4, while results for the dy-
namic models are presented in Table 5. The phasor models provide an excellent
estimate of the system parameters. DSE has difficulty estimating the fault resis-
tance for the dynamic model of grounded-wye network with a line-line fault. A
potential solution is to reduce the model order by neglecting the load impedance
on the faulted phases. Some moderate error is observed for the case of the delta-
connected load with a line-ground fault. Again, it may be possible to improve
performance by neglecting load impedance on the faulted phases.

Table 4: Results for Phasor State Estimation

Case R R̂ X X̂ Rf R̂f

Single-Phase RL Load 19.200 19.200 9.600 9.600 – –
Grounded-Wye Line-Ground Fault 7.387 7.387 3.693 3.693 0.923 0.923
Grounded-Wye Line-Line Fault 7.387 5.184 3.693 4.787 0.923 0.935
Delta Line-Line Fault 22.160 22.160 11.080 11.080 2.770 2.770
Delta Line-Ground Fault 22.160 22.160 11.080 11.080 2.770 2.770
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(a) Main model

(b) Delta load

Figure 14: Simulink model for a delta load with faults
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Table 5: Results for Dynamic State Estimation

Case R (Ω) R̂ (Ω) L (mH) L̂ (mH) Rf (mΩ) R̂f (mΩ)

Single-Phase RL Load 19.200 19.265 25.465 25.988 – –
Grounded-Wye No Fault 18.432 18.404 24.446 24.485 – –
Grounded-Wye Line-Ground Fault 18.432 18.432 24.446 24.446 11.000 10.997
Grounded-Wye Line-Line Fault 18.432 18.432 24.446 24.446 11.000 3.165
Delta No Fault 55.296 55.412 73.339 73.495 – –
Delta Line-Line Fault 55.296 55.895 73.339 73.666 2.000 2.001
Delta Line-Ground Fault 55.296 55.479 73.339 73.495 11.000 11.405

6 Conclusions

The results in this study demonstrate that DSE is capable of correctly identi-
fying model parameters of three different load configurations for both normal
and faulted operation. These load configurations model a lumped equivalent
of a radial electrical network supplying multiple loads. Several models showed
sensitivity to inital conditions, particularly the delta-connected load, so it is
important that consideration be given to providing the method with good ini-
tial conditions. One issue is in making sure that there is a sufficient number
of measurements to estimate model states. For example, it is not possible to
infer impedances for an unbalanced delta-connected load given a single time
snapshot. The models presented here assume that loads are balanced to reduce
the number of states. This assumption can be an issue for systems with a high
degree of load imbalance

Existing work has demonstrated that DSE can operate with nonlinear ele-
ments [13]. One option for future work is to expand the methods here to other
load models. These could include nonlinear voltage-dependent models where
power is a polynomial function of voltage (ZIP loads) or those where power is
a polynomial function of both voltage and frequency such as the WSCC load
model [14]. Alternately, these could include dynamic load models such as an
induction motor model (MOTORW) or a composite load model (CMPLDW)
[15]. Last, there is the possibility of protecting line sections that include loads
with coordinated breakers at both ends. This could correspond to a distributed
parameter line or a Pi/Tee lumped equivalent model [16].
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7 Appendix

Given a state-output mapping

y − h(x) (97)

and error-weighting matrix W , the squared error is

J = ε′Wε. (98)

Given the Jacobian H0 at x0, y can be approximated as

y = h(x0) +H0(x− x0). (99)

Substituting

J = [y − h(x0)−H0(x− x0)]′W [y − h(x0)−H0(x− x0)]. (100)

Setting the Jacobian equal to zero

∇J = −H ′0W [y − h(x0)−H0(x− x0)] = 0. (101)

Expanding

0 = −H0Wy +H ′0WH0x−H ′0WH0x0 −H ′0Wh(x0). (102)

Rearranging

H ′0WH0x = −H0Wy +H ′0WH0x0 +H ′0Wh(x0) (103)

(H ′0WH0)−1H ′0WH0x = (H ′0WH0)−1[H0Wy +H ′0WH0x0 +H ′0Wh(x0)].
(104)

and simplifying

H ′0WH0x = −H0Wy +H ′0WH0x0 +H ′0Wh(x0) (105)

x = (H ′0WH0)−1[−H0Wy +H ′0WH0x0 +H ′0Wh(x0)]. (106)

x = (H ′0WH0)−1[H ′0WH0x0 +H ′0Wε] (107)

x = x0 + (H ′0WH0)−1H ′0Wε. (108)

Finally, replacing x with xi+1, x0 with xi and ε with εi

xi+1 = xi + (H ′0WH0)−1H ′0Wεi. (109)

In the case that errors are weighted equally, W is the identity matrix and the
update equation simplifies to

xi+1 = xi + (H ′0H0)−1H ′0εi. (110)
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